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ABSTRACT 

Accurate traffic flow data are crucial for effective transportation planning and management. 

Different vehicle types impact traffic flow variably, requiring distinct passenger car 

equivalency (PCE) factors for calculating intersection and road capacity. Headway and 

spacing data are essential to assess traffic density and service level. Conventional data 

collection methods are time-consuming and often inaccurate. Unlike existing studies, this 

study employed computer vision to measure mixed traffic stream volume in terms of 

passenger car equivalent and collect headway-spacing data with high accuracy. The vehicle 

detection and counting procedures provide the mandatory infrastructure for measuring mixed 

traffic stream volume and collecting headway and spacing data. Novel approaches were 

introduced to gather comprehensive traffic data, including passenger car equivalent values, 

headway, spacing, flow rate, vehicle speed and traffic volume, using a single system. A 

custom and comprehensive international dataset was collected to analyse these approaches. 

Our trained model achieved a mean average precision (mAP) of 97.4%, with accuracies of 

95% for headway, 93% for spacing and 99% for PCE values. The dataset can be downloaded 

at https://github.com/burak-celik/atavehicledataset. 
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1. INTRODUCTION 

In recent years, intelligent transportation systems (ITS) have emerged as a key component for the 

development of smart cities, playing a critical role in the management, planning and security of public 

transportation [1-4]. Many developed countries utilise ITS to manage traffic conditions, integrate public transit 

systems [5, 6] and address traffic congestion and accidents effectively. These systems enable the determination 

of traffic flow characteristics and the collection of required information regarding traffic flow. This information 

encompasses the number, class, speed and length of vehicles passing at specific points. Besides these, the 

automotive industry has also seen a paradigm shift from traditional mechanical systems to intelligent systems, 

where artificial intelligence serves as the key element of advanced technologies [7]. Innovations that influence 

traffic flow, including semi-autonomous vehicles, autonomous vehicles, and advanced driver assistance 

systems such as adaptive cruise control, have emerged in this field. The implementation of these systems plays 

a crucial role in mitigating human factors that contribute to traffic accidents and enhancing passenger comfort 

[8, 9, 10]. 

For transportation planning, design and operational objectives, passenger car equivalency (PCE) factors 

have been employed for many years to convert mixed vehicle traffic into equivalent pure passenger car traffic 
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streams [11, 12]. PCE factors account for the distinctive impacts of various vehicle types on traffic flow [13]. 

Essentially, this value serves as a coefficient indicating the number of passenger cars that would exert an 

equivalent influence on traffic flow as a heavy vehicle. Due to their dimensions and limited acceleration and 

deceleration capabilities, heavy vehicles (such as trucks, buses, recreational vehicles and, in some countries, 

vans) negatively affect traffic flow [14]. Consequently, detecting the presence of heavy vehicles within the 

traffic is essential for accurate calculations of intersection and road capacity in tandem with PCE factors.  

Headway and spacing data are essential for various applications and analyses in traffic engineering, 

including capacity calculation, weaving areas, left turn at intersections, merging into the mainstream and 

merging or diverging into/from intersection arms and signalisation [15]. “The time, in seconds, between two 

successive vehicles as they pass a P2 point on the roadway, measured from the same common feature of both 

vehicles” is the definition of headway. Similarly, spacing is defined as “the distance (between P1-P2 points), in 

metres, between two succeeding vehicles in a traffic lane, measured from the same common feature of the 

vehicles” [16, 17, 18]. A visual expression of these data, acquired through the proposed method, is presented 

in Figure 1. 

 
Figure 1 – Basic representation of headway and spacing 

This study encompassed the determination of the number of vehicles by classes, employing a 

comprehensive dataset collected from 7 countries. The rationale behind this situation is that vehicle types differ 

across countries, and the goal is to enhance the model’s accuracy by increasing data diversity. The vehicle 

detection and counting procedure creates a mandatory infrastructure for determining the mixed traffic flow in 

terms of equivalent passenger cars and collecting headway and spacing data. Diverging from previous research, 

passenger car equivalent values were derived using the PCE factors to characterise mixed traffic flows in terms 

of passenger cars. Additionally, headway-spacing data, flow rate and traffic volume (q) were obtained. The 

study collectively estimated vehicle count by class, passenger car equivalent values, flow rate, vehicle speed, 

headway-spacing data and traffic volume. The YOLOv5 algorithm’s extra-large (XLarge) model was used for 

vehicle class determination. Training the YOLOv5 algorithm with international data was conducted using 

Google Colaboratory [19], a platform Google Research offers. This platform allows Python [20] code 

execution on GPUs, provided free of charge for machine learning and data analysis purposes. 

Several key motivations underpin the initiation of this study: 

1) Creation of a comprehensive dataset and robust model for various conditions: A remarkable 

contribution is the development of an expansive international dataset comprising 16,518 images with 

140,293 annotated instances. This dataset, originating from 7 different countries and encompassing both 

daytime and nighttime images, addresses the scarcity of publicly available vehicle detection and counting 

datasets. The dataset used in this study differs from existing datasets in that it contains data from 7 different 

countries and many different vehicle types. Notably, this dataset surpasses prior literature’s diversity, 

comprehensiveness and resolution level. We were able to collect data with greater accuracy than previous 

studies due to the complete dataset we used.  

Through our trained model, we achieve enhanced vehicle detection accuracy by mitigating challenges 

posed by variables such as daytime, nighttime and varying viewing angles. A trained model eliminates the 

difference between day and night and demonstrates efficacy across all conditions for vehicle detection and 

counting. 

2) A novel method for headway and spacing data: We introduce a novel method for acquiring headway 

and spacing data with high accuracy relevant to diverse traffic engineering applications such as capacity 

calculation, weaving areas, left turn at intersections, merging into the mainstream and merging or diverging 

into/from intersection arms and signalisation. 

3) Utilisation of PCE factors and collection of flow rate data: Computer vision was used to quantify mixed 

traffic flow in terms of equivalent passenger cars with PCE factors. Passenger car equivalent values are 

fundamental for the precise calculation of intersection and road capacity. Differing from existing research, 

computer vision was utilised to determine flow rate. 
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4) Comprehensive system testing: We rigorously assess our system’s performance by conducting tests 

involving more than 10,000 vehicles under various conditions. System testing in existing studies is more 

limited and insufficient to measure the true accuracy of the model. 

2. RELATED WORKS 

The number of studies in the field of vehicle classification and counting has grown over the past few years, 

and the results of these studies have consistently improved thanks to the employment of various algorithms, 

datasets, models and scenarios. Engineering challenges are increasingly being solved with optimisation 

algorithms as computer computing power increases [21]. The primary issue that must be addressed in this field 

is ensuring that computer vision-based systems are as accurate as, or more accurate than, manually performed 

traffic counts [22]. New studies emerge in vehicle detection, classification and counting every day due to 

advances in deep learning and computer vision. Thus, the accuracy of computer vision-based automatic traffic 

counting systems can compete with the precision of manually performed traffic counts. This section explores 

the literature for vision-based vehicle detection, counting and traffic monitoring areas, highlighting data 

necessary for performance comparison. 

In a study by Rajput et al. [23], the YOLOv3 algorithm was used to calculate charges according to vehicle 

class on toll roads. In the custom dataset, vehicles that do and do not have to pay tolls were divided into eight 

classes, as the Government of India recommended. There were 11,520 images in total in the dataset, and 80% 

were used for training and 20% for validation. With the YOLOv3 algorithm trained with the created dataset, 

94.1% classification accuracy was obtained in the tests performed at highway tolls. 

In the study by Song et al. [24], a vehicle detection and counting system based on computer vision was 

developed. In the custom dataset, vehicles were divided into three categories. The dataset contained a total of 

11,129 images and 57,290 annotated instances. After road surface segmentation was performed on the images 

for the development of vehicle detection, the images were placed on the YOLOv3 network. Vehicle trajectories 

and the number of vehicles passing were calculated using the ORB algorithm. Following the training process, 

an 87.9 mAP score was obtained. In tests conducted on 1,509 vehicles, a counting accuracy rate of 92.6% was 

observed. 

Bui et al. [25] researched various ways to enhance traffic analysis using video-based vehicle counting. 

Yolov3 and DeepSORT algorithms are used for vehicle detection, tracking and counting. Instead of virtual 

lines, distinguished regions for tracking and counting vehicles improve vehicle counting performance. The 

proposed method obtained an average of 88.5% vehicle count accuracy for different conditions. 

In research carried out by Park et al. [26], an integrated system that utilised YOLOv4 and identified vehicles 

and licence plates was developed. A custom dataset was created using traffic images collected from South 

Korea at 4K resolution to train the YOLOv4 algorithm. According to their dimensions and passenger capacity, 

vehicles were divided into six classes in the dataset. There were a total of 12,044 annotated instances in the 

dataset. When the results of training the YOLOv4 algorithm with the collected dataset are examined, the mAP 

scores obtained in the tests that were carried out separately for 1-, 2-, 3- and 4-lane roads were 98.0, 94.0, 97.1 

and 84.6, respectively. 

An improved YOLOv4 detection method was suggested in research published by Xu et al. [27] to detect 

small and occluded objects more accurately. Following training the improved YOLOv4 network using the 

KITTI Dataset (Geiger et al. [28]), an 81.2 mAP score was recorded for the three primary object classes. After 

introducing the YOLOv4 network with the BDD100K Dataset (Yu et al. [29]) the mAP score was 61.6 for 

three primary object classes. Compared to the mAP scores achieved with the standard YOLOv4 network, the 

scores for the improved YOLOv4 network were 2.7 points higher. 

An improved YOLOv5 network was proposed in research carried out by Zhang et al. [30] to reduce the rate 

of incorrect detections caused by occlusion. The dataset was created with traffic images collected from the 

Shandong region of China and images retrieved from BIT Vehicle_Dataset (Dong et al. [31]) to train the 

network. The database contains 2,844 images of 7 vehicle classes and approximately 3,200 annotated 

instances. Following the training process, the standard YOLOv5 network yielded an 89.8 mAP score, while 

the improved YOLOv5 network delivered a 90.5 mAP score for all vehicle classes.  

Within the context of the research reported by Dinh et al. [2], a custom dataset was collected using traffic 

images gathered from the Vietnam region. The dataset comprised a total of 4,700 annotated images. Looking 
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at the training results, it was determined that SSD MobileDet was the most successful model in terms of FPS 

and mAP scores on the Coral Dev Board (320 x 320). An average FPS of 26.8 and 92.1 mAP scores were 

obtained for this model. In vehicle counting tests, four distinct vehicle classes achieved an average accuracy 

of 83.5% toward the camera direction and an average accuracy of 82.7% away from the camera direction. 

Harikrishnan et al. [32] proposed a method, a modified single-shot multi-box convolutional neural network 

named Inception-SSD, for vehicle detection and vehicle counting. Affinity propagation clustering (APC) is 

used instead of non-maximum suppression (NMS) to enhance the identification of nearby occluded cars. On 

the PASCAL VOC 2007 test dataset, the proposed ISSD achieved 79.3 mean average precision (mAP). The 

vehicles are counted class-wise with a weighted F1 of 98.5% and 93.3% vehicle counting accuracy obtained. 

Khalifa et al. [33] created two distinct datasets consisting of 4,870 images for daytime and 5,338 images 

for nighttime, with traffic images collected from the Malaysian region in their study. In the research, the 

YOLOv5-small architecture was combined with the k-means algorithm to achieve anchor box optimisation in 

various illumination conditions. Existing mAP scores were improved by 5-6% approximately due to the k-

means algorithm applied. After training the model, a 97.8 mAP score was obtained for the daytime dataset, 

and a 95.1 mAP score was obtained for the nighttime dataset. The average precision value was calculated as 

97.8 for the daytime dataset, while the same was 95.2 for the nighttime dataset. 

In the study by Neupane et al. [34], the YOLOv5-large network was trained using two datasets comprising 

images captured by Thailand’s traffic surveillance cameras. There were seven vehicle classes and a total of 

34,983 samples in the datasets. The transfer learning-based fine-tuning method was applied to solve the poor 

performance problem that arises when testing with images not included in the dataset for vehicle detection 

systems using deep learning. As a result of training the model, the mAP@50 score was determined to be 69.5%, 

and the precision and recall values were determined to be 96% and 95%, respectively. In vehicle counting 

tests, regardless of vehicle class, an average accuracy rate of 94% was recorded at various illumination levels. 

In the research conducted by Djula et al. [35], YOLOv7 was employed in the vehicle detection and counting 

system. A custom dataset has been prepared for the vehicle types to vary widely in Indonesia and the trained 

model to be suitable for the place where the study is carried out. A dataset consisting of 1,105 images was 

created to train the model. An average of 94.5 mAP score was obtained for nine vehicle classes. 

In the study of Kalva et al. [36], the YOLOv8 and DeepSORT algorithm was used to build a real-time 

vehicle identification and counting system. An open-source computer vision dataset was created to train the 

model. The dataset, which has 13 vehicle classes, consists of 627 images. As a result of model training, a 92.8 

mAP score was obtained. 

In the study by Chen et al. [37], a model was created using various sensors to collect data on traffic flow. 

CAV’s hardware platform and software algorithm were used to create the model, and the Flow Project was 

used to optimise the model. CAV functions as a “super-extended floating car” in traffic flow, communicating 

with other intelligent cars and detecting any vehicle’s driving status, distribution and density within its 

detection region. An established system can collect the mean headway of each lane and the mean spacing of 

each lane from the model. 

Traffic data were effectively extracted from videos taken with legacy cameras by Liu et al. [38]. Vehicle 

classification, counting and speed measurement processes were made with images taken with these cameras. 

The vehicles were divided into classes according to their lengths in the study. The tests achieved 66% to 87% 

counting accuracy for SSD and 90% to 98% for YOLOv2 and Faster R-CNN. Headway and spacing data can 

be obtained from the time-space diagram produced by the proposed method. 

Traffic Flow Load monitoring system, which is an essential data for bridge design, was installed by Ge et 

al. [39]. The study develops a monitoring system that combines a weigh-in-motion system with machine vision 

capabilities. The system is capable of obtaining vehicle length, axle spacing, vehicle speed and headway data. 

Target detection and tracking were performed with YOLOv3 and a matching algorithm. The proposed method 

offers improved time measurement resolution compared to methods that rely on the WIM system. 

Du et al. [40] acquire time headway and passenger car unit (PCU) at junctions using the fusion algorithm 

of YOLOv3 and DSST. This fusion approach can more precisely extract the intersection’s traffic flow metrics 

since it can fully reflect the traits of the two. The proposed method has been evaluated for three vehicle classes: 

buses, trucks and cars. Average 94.97% accuracy for PCU, average 78.87% accuracy for time headway was 

achieved. 
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3. METHODS 

This section provides information about the collected dataset and the implemented traffic data collection 

system. The traffic data collection system established in this study, unlike the systems shown in similar studies 

in the literature, is comprehensive in terms of data diversity, versatility and collection of all data with a single 

system. The general architecture of the system can be seen in Figure 3. When it comes to summarising the 

workflow of the traffic data collection system, the test footage (image or video) was provided to the system in 

the first stage as the input. Using the YOLOv5x (Jocher et al. [41]) algorithm, which was subjected to transfer 

learning using the combined dataset, the classes of vehicles are detected, and their bounding boxes are drawn. 

The DeepSORT algorithm assigns a unique ID to each detected vehicle. The vehicle counting process is 

initiated when a vehicle with a unique ID enters the ROI (region of interest) with user-determined coordinates. 

ROI is shown in Figure 2 and Figure 6 as a white line. 

3.1 Headway-spacing data and traffic volume 

Simultaneously with the vehicle counting process, the system calculates headway and spacing data. For the 

headway calculation, the user drew green and red lines for each lane, as seen in Figure 6. If explained for the 

first lane, the time counter starts when the bounding box of the first vehicle moving on the lane touches the 

green line. To determine the correct time intervals in the calculation of the start time of the headway 

measurement, the real-time fps value and the frame ID (Fid) are used as in Equation 1. The counter stops when 

the following vehicle’s bounding box touches the green line. Thus, the interval in time between two 

consecutive vehicles, that is, the headway, is calculated using Equation 2. 

The average headway value for each lane (Avg TimeHW) is printed on the right in Figure 6 by averaging 

the headways between all vehicles in the same lane. In this context, Hst represents the headway start time of 

each consecutive vehicle, calculated by 

st idH F x(1/ fps)  (1) 

where Fid is the frame id and then headway constant (H) is calculated by 

c st p stH | V (H ) V (H ) |   (2) 

Vc is the current vehicle, Vp is the previous vehicle and H is headway data. Vehicle speeds are used to 

calculate spacing. To explain the first lane, the distance between the white and green lines in Figure 2 and Figure 

6 must be known to measure the speed. The average speed of the vehicles was determined by measuring the 

time the vehicles travelled the distance between these two lines in our system. Figure 2 can be examined for a 

better understanding of the approach. V1 and V2 are the average speeds of the vehicles. 

 
Figure 2 – Basic representation of the spacing calculation 

In our method, the distance measurements given in Figure 6 are calculated as in Equation 3 by subtracting the 

y coordinate values (Dy) on the image axis of the points where each vehicle touches the white ROI line and 

own lane line. This length and the required lengths for different videos have been measured using satellite 

photos with GPS. To obtain the distance measurement from our method, the pixel distance must be chosen 

correctly to get the actual distance. Therefore, the distance measurement from the GPS was compared with the 

distance measurement from our method. Dy is the y coordinate distances, rw is the white ROI line y-coordinate 

and ln is the nth lane-line y-coordinate. 

i iy w nD | r l |   (3) 
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After obtaining the y distance in our method, the Dy expression is divided by the pixel distance as in Equation 

4 to obtain the real-world distance measurement. As in the headway calculation, the time in Equation 1 is added 

to Equation 5 according to the real fps.  

y ii m
w y pD D / P  (4) 

Displacement = Velocity.Time  (5) 

where, 𝐷𝑤𝑦ⅈ
 on the world axis of the points where each vehicle touches the white ROI line and own lane-line 

with y-coordinates. 𝑃𝑝𝑚represents metre per pixel, x is the distance (m), V is average speed (m/s) and t is the 

time (s). Also, the calculated spacing algorithm is shown in Algorithm 1. Uid is a unique vehicle ID, Rst is ROI 

line start times and St is headway start times array data. 

When calculating the spacing, the green line was taken as a fixed reference line.  Spacing is calculated with 

a fixed reference line approach as it changes constantly in moving traffic. The distance between the front 

bumpers of the first and second vehicles is calculated for the position of the second vehicle when it touches 

the green reference line in Figure 2. After calculating the average headway for a two-lane road, the traffic 

volume was calculated using Equation 6 [42]. 

 
Algorithm 1 – Space headway calculation 

SPACE HEADWAY (Hs) 

1       if (min(box) in rw and Uid  not in data), then 

2           Hst  = Fid *(1/ fps) 

3           Rst [Uid] = Hst  and data.append(Uid ) 

4      end 

5      for i in range (0, len(ln), 2) then   

6           if (min(box) in ln) then 

7              Dy [i] = | rw – ln [i] | 

8              Dy [i] = Dy[i] / 𝑃𝑝𝑚    

9               t = | St [Uid] - Rst [Uid]| 

10            V = Dy [i] / t 

11        end 

12     end 

13     CalculateHeadwaySpaces() :  

14          H = | Vc (Hst) - Vp (Hst) | 

15          Hs = Vp [V] * H 
 

3600 s / h
Traffic Volume(veh / hr)

headway (s / veh)
  (6) 

3.2 Collection of flow rate and passenger car equivalent values 

In addition, the proposed system can compute the flow rate, which is the hourly calculation of the number 

of vehicles that pass through a particular road section in less than an hour [42], as well as the passenger car 

equivalent values, which are acquired by multiplying the number of vehicles that were counted for each vehicle 

class by the PCE factors pertaining to that vehicle class. 

A GitHub repository content [43] was referenced as a traffic data collection system. This content was 

recoded and used in this study. In the collected dataset in Section 3.3, vehicles were classified as passenger 

cars, trucks, vans and buses, and then vehicle counts were performed across all four of these classes. The 

following are the reasons for dividing the vehicles into these four primary classes for the study:  

1) A significant portion of the traffic flow comprises vehicles from these four classifications, 

2) If the vehicles are classified into more than four classes, it may become difficult to identify visually similar 

vehicles, and as a result, the model may provide false detections, 
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3) The dimensions, start-up times, acceleration and deceleration capabilities, braking distances, headways 

and spacings and their ability to maintain high speeds are different in the four classes mentioned [44, 45]. 

 
Figure 3 – Workflow diagram of traffic data collection system 

Hence, vehicles were divided into four classes: passenger cars, trucks, vans and buses. PCE factors 

pertaining to each class can result in different values in different sources based on the features of the vehicles 

(dimensions, start-up times, acceleration and deceleration capabilities, braking distances, headways and 

spacings and their ability to maintain high speeds). These values may vary based on the standards established 

by different countries regarding this matter. Table 1 displays the PCE factors [46] for Türkiye, that are utilised 

in the capacity analysis. 

Table 1 – PCE factors in Turkish Standards TS 6407 

Vehicle type Urban road Roundabout Signalised intersection 

Passenger car 1.00 1.00 1.00 

Minibus, taxi 1.15 1.30 1.27 

Commercial truck 2.00 2.80 1.75 

Urban and interurban bus 3.00 2.80 2.25 

 

PCE factors stated in the Highway Capacity Manual 2010 [42] are shown in Table 2. In HCM 2010, trucks 

and buses were assessed together. The PCE factors assigned based on the vehicle class also differ based on the 

terrain’s topography. 

Table 2 – Highway Capacity Manual 2010 PCE factors 

Vehicle 
PCE factors by type of terrain 

Level Rolling Mountainous 

Trucks and buses 1.5 2.5 4.5 

Recreational vehicles 1.2 2.0 4.0 
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In this study, vehicle counting was performed, the number of vehicles passing through the monitored 

section was calculated based on the vehicle classes, and these numbers are presented in the results section both 

in terms of their vehicle class and passenger car equivalent values (for HCM and TS6407) to use them for 

capacity analysis. 

System testing was conducted on a large variety of different scenarios and a vast number of vehicles. 

System tests with a limited number of vehicles may not be sufficient to determine the system’s real success 

rate. Increasing the number of tests conducted helped to showcase the system’s real success rate more 

accurately. 

Figure 6 shows the system image in operation. The counting process is carried out when the centre of the 

bounding box passes the ROI specified by the user. The position and width of the ROI may be adjusted 

depending on the camera’s angle and the distance between the camera and the vehicles. The optimum camera 

angle was set as 35-45° for the best vehicle counting accuracy. 

3.3 Vehicle dataset 

In the computer vision field, to improve the generalisation of the model, methods such as collecting more 

data, data augmentation and label smoothing are used [47, 48]. A large and diverse dataset was collected in 

this study to develop a generalised model. For the model to learn the vehicle classes more accurately, images 

of traffic from several countries were included in the dataset (since the variety of vehicle types in different 

countries is abundant). To improve the generalisation of the model, the dataset included: 

 Traffic images with different resolutions (low, medium and high resolution) 

 Traffic images collected from 7 different countries 

 Traffic images collected in day and night time 

 Vehicle images captured from the front, back and sides 

 All annotation procedures were performed manually, and only double-checked images were used to 

prevent inaccurate annotation. 

The dataset for this research contains 16,518 images and a total of 140,293 annotated instances. The number 

of annotated instances was high to increase vehicle detection accuracy. The distribution of annotated instances 

per vehicle type is presented in Table 3. The dataset contains an average of 8.5 annotated instances per image. 

Figure 4 depicts the graph of the combined dataset compared to other datasets regarding the number of 

annotations per image. 

Table 3 – Number of annotated instances for each class 

Vehicle type Number of annotated instances 

Car 80,192 

Bus 7,962 

Truck 35,224 

Van 16,915 

Total 140,293 

 

The dataset contains 11,129 images (57,290 annotated instances) from the study conducted by Song et al. 

[19] using images captured in the Hangzhou, China region. The annotations on the images from the research 

above were reviewed and re-created from scratch, and the van class was added. The remaining 5,389 images 

(83,003 annotated instances) were acquired from public traffic images from the United States, France, England, 

Poland, Thailand and Türkiye. The dataset was created with images collected from 7 different countries in 

total. Of the dataset, 75% of the images in the collected dataset were used for training, 15% for validation and 

10% for testing. The dataset is universal since it covers various vehicle images from countries in different parts 

of the world. Therefore, it can be employed in other countries while offering high accuracy. 
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Figure 4 – Comparison of datasets in terms of annotated instances per image 

3.4 Transfer learning 

YOLOv5 provides pre-trained models on the COCO dataset (common objects in context), which consists 

of 80 classes. Instead of training the model from scratch, the YOLOv5x, among the default models of the 

YOLOv5 algorithm, was trained with the transfer learning technique and utilised in this study.  Thus, both 

time and processing power were conserved, and a high level of training success was attained. The xLarge 

model of the YOLOv5 algorithm was applied because, as shown in Figure 5 [41] it has a higher average 

precision (AP) value than the nano, small, medium and large models of the algorithm above.  The training was 

carried out on the Google Colaboratory platform. While the YOLOv5x algorithm was trained for 500 epochs, 

the network size was set to 832x832, and the batch size was selected as 10. For all other training parameters, 

default values were utilised. The training process was completed in approximately 200 hours on the Colab 

platform. During the tests performed within the scope of the study, the best weights obtained after training 

were used. In Section 4, the results of the training process are explained in thorough detail. 

 
Figure 5 – Graph of AP – GPU speed values of models of YOLOv5 algorithm and EfficientDet algorithm 

3.5 DeepSORT algorithm  

The DeepSORT algorithm is a special object-tracking algorithm based on deep learning [49]. DeepSORT, 

widely used in the literature, can track the target object for a long time with the help of the Kalman filter it 

contains, even though an object comes in front of the tracked object. Thus, it is prevented from changing the 

unique IDs assigned to objects. A deep learning algorithm will be used in DeepSORT to decrease a large 

number of identity shifts and increase the effectiveness of tracking through SORT algorithm occlusions [50]. 

The Kalman filter is used iteratively for better attribution and can predict future locations based on the 

current location. After the unique ID assignment, it assigns the detections in a new frame to the existing traces 

using the Hungarian algorithm for the assignment cost function to reach a minimum [51]. Also, to include the 

uncertainties from the Kalman filter, the squared Mahalanobis distance is used, which gives a better result than 

Euclidean. To avoid the handicaps of the Kalman filter, which may fail in real-world problems (occlusion, 

dynamic movement), another distance metric based on the “deep appearance” of the object is used. 
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Figure 6 – Image of traffic data collection system in action 

A classifier was created in this metric, and the last classification layer was removed. In this way, a single 

attribute vector (deep appearance descriptor) was generated, and the fast operation of the algorithm compared 

to classical architecture was ensured. The CUDA and cuDNN versions used in the tests of the model were 11.1 

and 11.2, respectively. 

4. RESULTS AND DISCUSSION 

The training results for the study’s model and the vehicle counting results utilising the trained model are 

provided in this section. Precision (P), recall (R), average precision (AP), mean average precision (mAP), F1-

score and counting accuracy metrics, which are often employed in research using object detection algorithms, 

were utilised to compare the findings obtained in the study. P, R, AP, mAP, F1-score and counting accuracy 

were calculated as shown in Equations 7, 8, 9, 10, 11 and 12: 

TP
Precision =

TP+FP
 (7) 

TP
Recall =

TP FN
 (8) 

where TP, FN and FP are the number of true positives, false negatives and false positives, respectively. 

Precision is the proportion of all positive samples over the confidence threshold of 50%, whereas recall is the 

percentage of all positive samples found at the same confidence level. 

1

max

r 0

1
AP p (r), r [0,0.1,...,1],

11 

   (9) 

AP
mAP ,

n



 (10) 

The average precision on a group of 11 evenly spaced recall levels, known as AP, serves as a summary of 

the P-R curve. The mean of average precision of all classes is described by the mAP. 
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2
F1

1 1

precision recall




 (11) 

Number of correct detections
Counting Accuracy

Number of ground truth detections
  (12) 

F1 score calculates the harmonic mean of precision and recall, and counting accuracy is calculated by 

dividing the number of correct detections (the number of correct detections is found by subtracting the total 

number of errors from ground truth) by the ground truth [52]. 

Figure 7 depicts the loss, precision, recall and mAP graphs generated from the 500 epochs of training the 

YOLOv5x algorithm. 

 
Figure 7 – Loss minimisation and P, R and mAP graphs of the model for the training and validation stage 

To improve the generalisation of the model, the YOLOv5x algorithm was trained using data collected from 

seven different countries. The trained model obtained a score of 97.4 % mAP@0.5 for all classes in the dataset 

as shown in Table 4. 

Table 4 – Training results for our model 

 

The results of the vehicle counts for daytime traffic images from Table A1 are summarised in Table 5. In 

daytime conditions, the average counting accuracy for all vehicle classes was recorded as 96%. 

Class Precision Recall 
mAP@ 

0.5 

mAP@ 

0.95 

Car 0.94 0.94 0.98 0.74 

Bus 0.95 0.95 0.97 0.77 

Truck 0.95 0.93 0.98 0.77 

Van 0.91 0.94 0.97 0.80 

All classes 0.94 0.94 0.97 0.77 
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Table 5 – Vehicle counting results for daytime 

Vehicle type Ground truth count Method count Counting accuracy 

Car 4,421 4,328 0.98 

Bus 105 118 0.88 

Truck 516 508 0.98 

Van 816 821 0.99 

Total 5,858 5,775 0.96 

 

Table 6 provides an overview of Table A1 for nighttime vehicle counting data. In nighttime conditions, the 

average counting accuracy for all vehicle classes was recorded as 97%. 

 In contrast to other studies, a substantially more significant number of vehicles (10,064) were included for 

system testing in this study. Examining Tables 5 and 6 and Figures 8 and 10, it is evident that the trained model 

eliminates the difference between day and night. In other words, with a well-prepared dataset and a single 

model, it becomes feasible to count traffic during both daytime and nighttime (minimum illumination) 

conditions. The results of the day and night circumstances were analysed independently since they may affect 

counting accuracy. 

Table 6 – Vehicle counting results for nighttime 

Vehicle type Ground truth count Method count Counting accuracy 

Car 3,417 3,411 0.99 

Bus 85 86 0.99 

Truck 514 489 0.95 

Van 190 201 0.94 

Total 4,206 4,187 0.97 

 

Table A1 reveals that several vehicle classes in some videos have low counting accuracy rates. This is 

attributable to the fact that there is a limited number of vehicles belonging to the vehicle class specified in the 

video. As the number of vehicles counted using the traffic data collection system increases, the counting 

accuracy improves and converges its real value. 

Table A1 shows the manual vehicle counting results derived from 29 traffic videos (21 different scenarios) 

and the vehicle count results performed with the proposed method. All videos used during the training and 

testing phases of the model are in 1080p resolution. Of the 29 videos utilised in the testing phase of the 

proposed method, 22 were recorded during daytime, while 7 were recorded at nighttime. However, an 

examination of Table 5 and Table 6 reveals that the vehicle count values for day and night are similar to each 

other. To transparently illustrate the system’s vehicle counting performance, each test video’s performance in 

the system is presented independently and in-depth. The ground truth count, method count, error, precision, 

recall, F1-score and counting accuracy values for each video can be seen in the mentioned table. The name of 

the video, duration of the video, side of vehicles seen by camera and time of the day are given in the first 

column, respectively. The total duration of the test videos was 406 minutes (6.8 hours). Table 7 provides a 

summary of all vehicle counts conducted for the study. The ground truth count was determined by manually 

reviewing the vehicle counting videos one by one and recording the counts. In contrast, the method count was 

obtained using the proposed method for vehicle detection and counting. 
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Table 7 – Summary of vehicle counting results for all 29 videos 

Vehicle type Ground truth count Method count Counting accuracy 

Car 7,838 7,739 0.99 

Bus 190 204 0.93 

Truck 1,030 997 0.97 

Van 1,006 1,022 0.98 

Total 10,064 9,962 0.97 

 

Regardless of vehicle class, the counting accuracy rate was 99% when the ground truth count (10,064 

vehicles) and total method count (9,962 vehicles) were examined. If the counting accuracy is calculated based 

on the average of counting accuracies per each vehicle class separately, then it was 97%. In another 

performance test, likewise to the study by Kang et al. [53], the trained model is tested on a test portion of other 

mainstream datasets or an appropriate subset of the dataset. These datasets have been created by Guerrero-

Gómez-Olmedo et al. [54], Song et al. [24] and Neupane et al. [34] respectively. Table 8 presents the results 

that were collected from performance tests. 

Table 8 – Performance of our model on mainstream datasets 

Dataset Number of images Number of vehicles Counting accuracy 

Olmedo et al.  1878 18524 0.93 

Song et al.  2225 12490 0.99 

Neupane et al. 467 2632 0.94 

 

Headway evaluations (in terms of seconds) made manually and with the proposed method are given in Table 

9. The 3rd column contains manual evaluation, and the 4th column contains the evaluation results made with 

the proposed method. Evaluations were conducted on 5 different videos and 1,548 vehicles, as this sample size 

was deemed sufficient for the study. As a result, headway time was obtained with a 95% accuracy. 

In addition, in manual headway evaluations, the reaction time is also included due to the human factor. 

Therefore, the accuracy of the proposed method may be superior. The headway evaluation performance of the 

system is also shown in Figure 9. 

Table 9 – Performance of the proposed method for headway measurement 

Video Vehicle count 
Avg. headway 

(manual) 

Avg.  headway 

(method) 
Accuracy 

30.mp4 302 3.18 2.98 0.94 

31.mp4 187 4.10 4.00 0.98 

32.mp4 126 3.01 3.46 0.88 

33.mp4 532 3.17 3.25 0.98 

34.mp4 401 4.35 4.30 0.98 

Total 1548 3.56 3.60 0.95 

 

Table 10 compares the proposed method with other important studies in the field in recent years. As a result 

of the method used in the study and the large dataset, it is seen that the model is superior in terms of mAP 

scores, number of vehicles on which the model is tested and vehicle counting accuracy. 

In the second column of Table 11, the passenger car equivalent values calculated according to HCM and 

Turkish Standard Institution (TSE) after manual vehicle counting for various videos are represented. These 
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values were generated by multiplying the number of manually counted vehicles for each vehicle class by the 

PCE factors for that class. 

Table 10 – Proposed method performance evaluation with other existing works 

Method Dataset Algorithm used 
Number of 

images 
mAP@0.5 

Vehicle 

count/counting 

accuracy 

Song et al. (2019) Custom 
Yolov3 coupled with ORB 

algorithm 
11129 87.8 1509/93.2 

Harikrishnan et al. 

(2021) 
Custom 

Improved SSD coupled with 

APC 
8000 84.6 1002/93.3 

Dinh et al. (2021) 
Vehicle detection 

dataset (custom) 
SSD MobileDet 320 x 320 4700 92.1 415/83.3 

Neupane et al. (2022) 

Thai-vehicle-

classification-dataset 

(custom) 

Yolov5l coupled with multi-

vehicle tracking algorithm 
9333 69.5 4697/94.4 

Proposed method 
ATA vehicle dataset 

(custom) 
Yolov5x-DeepSORT 16518 97.4 10064/97.0 

 

 
Figure 8 – Trained model object detection in the nighttime 

 
Figure 9 – Manual and proposed method headway measurement curves 
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Figure 10 – Trained model object detection in the nighttime 

The third column of Table 11 contains passenger car equivalent values obtained with the traffic data 

collection system. The passenger car equivalent values represent the number of passenger cars that would have 

the same influence on traffic flow as the vehicles in the video. Using the PCE factors provided by HCM and 

TSE, the system’s performance in measuring passenger car equivalent values was assessed for 1,587 vehicles, 

and more than 99% accuracy was attained for both. The vehicle counting data and passenger car equivalent 

values provide information about the relevant traffic flow and are also used to determine intersection and road 

capacity. 

Table 11 – Passenger car equivalent value results for five videos 

Video  
Ground truth-passenger car 

equivalent values (HCM/TSE) 

Proposed method passenger car 

equivalent values (HCM/TSE) 

35.mp4 142/151.4 143.5/150.6 

36.mp4 501/534.6 507/546.5 

37.mp4 226.5/237.9 241.5/225.1 

38.mp4 494/502 489.5/496.5 

39.mp4 279.5/316.5 279/314.5 

Total 1643/1742.4 1633.5/1733.2 

 

100 observations were taken to assess the spacing data results. Figure 11 displays the results of 100 spacing 

observations. The observed spacing data and the spacing values evaluated by the traffic data collection system 

were determined to be similar, as shown in Figure 11. Manual and system measurement data were evaluated, 

and spacing measurement accuracy was found to be 93%. 



Promet – Traffic&Transportation. 2025;37(4):888-910.  Data Analysis and Modeling  

903 

 
Figure 11 – Manual and proposed method spacing measurement scatter plot graph 

5. CONCLUSIONS 

The comprehensive traffic data collection framework introduced in this study demonstrates significant 

advancements in vehicle detection, counting and analysis across diverse conditions and environments. By 

leveraging a vast, international dataset and state-of-the-art computer vision algorithms, the model successfully 

maintains high accuracy in daytime and nighttime scenarios, achieving an impressive mean average precision 

(mAP) of 97.4% and consistent accuracy across headway, spacing and PCE metrics. Notably, this approach 

resolves issues found in similar studies – such as limited dataset diversity and restricted evaluation scenarios 

– by incorporating a broad range of vehicle types and environmental conditions, which enhances the 

generalisability of the model. 

Compared to existing methods, this study’s model not only streamlines the traffic data collection process 

but also provides high accuracy in estimating parameters critical for traffic management, including flow rate 

and intersection capacity through passenger car equivalency (PCE) factors. The testing conducted on over 

10,000 vehicles showcases the model’s robustness and reliability, highlighting its potential application for 

adaptive traffic systems in diverse urban environments. Such systems could benefit from enhanced traffic 

monitoring accuracy, which supports more effective congestion management and contributes to sustainable 

urban mobility goals. 

Future research could build on this work by exploring integration with adaptive traffic control systems and 

extending the dataset to capture even broader global variability. As urban centres prioritise intelligent 

transportation systems, this study’s approach lays a valuable foundation for further innovations that could 

make real-time, automated traffic data collection an accessible tool for city planners and transportation 

engineers globally. 
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Burak ÇELİK, Ahmet TORTUM, Emre ÇİNTAŞ, Barış ÖZYER 

Bilgisayarlı Görü ve Uluslararası Veriseti Kullanılarak Headway-Spacing’in Analiz 

Edilmesi ve Eşdeğer Birim Otomobil Değerlerinin Hesaplanması 

Öz 

İsabetli trafik akışı verileri, etkili ulaşım planlaması ve yönetimi için çok önemlidir. Farklı 

araç tipleri trafik akışını değişken bir şekilde etkiler, kavşak ve yol kapasitesini hesaplamak 

için farklı Eşdeğer Birim Otomobil (PCE) faktörleri gerektirir. Headway ve spacing verileri, 

trafik yoğunluğunu ve hizmet seviyesini değerlendirmek için önemlidir. Geleneksel veri 

toplama yöntemleri zaman alıcıdır ve genellikle yanlıştır. Bu çalışma, mevcut çalışmalardan 

farklı olarak, karma trafik akışı hacmini eşdeğer otomobil birimi cinsinden ölçmek ve 

headway-spacing verilerini yüksek doğrulukla toplamak için bilgisayarlı görüyü 

kullanmıştır. Araç algılama ve sayım prosedürleri, karma trafik akışı hacmini ölçmek ve 

headway ve spacing verilerini toplamak için zorunlu altyapıyı sağlar. Tek bir sistem 

kullanılarak, eşdeğer birim otomobil değerleri, headway, spacing, akım oranı, araç hızları ve 

trafik hacmi dahil olmak üzere kapsamlı trafik verileri toplamak için yeni yaklaşımlar 

tanıtılmıştır. Bu yaklaşımları analiz etmek için özel ve kapsamlı bir uluslararası veri kümesi 

toplanmıştır. Eğittiğimiz model %97,4 mean Average Precision (mAP) değeriyle birlikte, 

headway için %95, spacing için %93 ve PCE değerleri için %99 isabet oranı elde etmiştir. 

Anahtar Kelimeler 

Akıllı Ulaşım Sistemleri; Trafik Akım Verisi; Bilgisayarlı Görü; Headway-Spacing Verisi; 

Birim Otomobil Eşdeğerliği. 
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Table A1 – Vehicle count results table 

Video Vehicle type 

Ground 

truth 

count 

Method 

count 

Missing/multiple 

detection/error 
Precision % Recall % F1-Score 

Counting 

accuracy 

% 

1.mp4 

(2 min) 

Front 

Daytime 

Car 151 153 0/2/2 1 0.99 0.99 0.99 

Bus 0 0 0/0/0 1 1 1 1 

Truck 9 6 3/0/3 0.67 1 0.8 0.67 

Van 13 12 1/0/1 0.92 1 0.96 0.92 

Total/Avg. 173 171 4/2/6 0.90 1 0.94 0.89 

2.mp4 

(2 min) 

Back 

Daytime 

Car 96 94 2/0/2 0.98 1 0.99 0.98 

Bus 0 0 0/0/0 1 1 1 1 

Truck 6 6 0/0/0 1 1 1 1 

Van 5 5 0/0/0 1 1 1 1 

Total/Avg. 107 105 2/0/2 0.99 1 1 0.99 

3.mp4 

(1 min) 

Front 

Daytime 

Car 47 46 1/0/1 0.98 1 0.99 0.98 

Bus 6 6 0/0/0 1 1 1 1 

Truck 1 1 0/0/0 1 1 1 1 

Van 8 10 0/2/2 1 0.8 0.89 0.75 

Total/Avg. 62 63 1/2/3 1 0.95 0.97 0.93 

4.mp4 

(6 min) 

Front 

Daytime 

Car 148 148 0/0/0 1 1 1 1 

Bus 0 0 0/0/0 1 1 1 1 

Truck 15 16 0/1/1 1 0.94 0.97 0.93 

Van 29 28 1/0/1 0.97 1 0.98 0.97 

Total/Avg. 192 192 1/1/2 0.99 0.98 0.99 0.97 

5.mp4 

(5 min) 

Front 

Daytime 

Car 58 58 0/0/0 1 1 1 1 

Bus 4 4 0/0/0 1 1 1 1 

Truck 14 13 1/0/1 0.93 1 0.96 0.93 

Van 18 19 0/1/0 1 0.95 0.97 0.94 

Total/Avg. 94 94 1/1/2 0.98 0.99 0.98 0.97 

6.mp4 

(14 min) 

Front 

Daytime 

Car 374 372 2/0/2 0.99 1 1 0.99 

Bus 0 0 0/0/0 1 1 1 1 

Truck 50 51 0/1/1 1 0.98 0.99 0.98 

Van 116 116 0/0/0 1 1 1 1 

Total/Avg. 540 539 2/1/3 1 1 1 0.99 

7.mp4 

(14 min) 

Back 

Daytime 

Car 256 259 0/3/3 1 0.99 0.99 0.99 

Bus 0 0 0/0/0 1 1 1 1 

Truck 46 45 1/0/1 0.98 1 0.99 0.98 

Van 100 97 3/0/3 0.97 1 0.98 0.97 

Total/Avg. 402 401 4/3/7 0.98 1 0.99 0.98 

8.mp4 

(6 min) 

Front 

Daytime 

Car 52 52 0/0/0 1 1 1 1 

Bus 1 1 0/0/0 1 1 1 1 

Truck 8 8 0/0/0 1 1 1 1 

Van 18 16 2/0/2 0.89 1 0.94 0.89 

Total/Avg. 79 77 2/0/2 0.97 1 0.99 0.97 
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Video Vehicle type 

Ground 

truth 

count 

Method 

count 

Missing/multiple 

detection/error 
Precision % Recall % F1-Score 

Counting 

accuracy 

% 

9.mp4 

(5 min) 

Back 

Daytime 

Car 38 41 0/3/3 1 0.93 0.96 0.92 

Bus 6 6 0/0/0 1 1 1 1 

Truck 5 2 3/0/3 0.4 1 0.57 0.4 

Van 22 23 0/1/1 1 0.96 0.98 0.95 

Total/Avg. 71 72 3/4/7 0.85 0.97 0.88 0.82 

10.mp4 

(5 min) 

Back 

Daytime 

Car 191 178 13/0/13 0.93 1 0.96 0.93 

Bus 9 12 0/3/3 1 0.75 0.86 0.67 

Truck 32 40 0/8/8 1 0.8 0.89 0.75 

Van 38 41 0/3/3 1 0.93 0.96 0.92 

Total/Avg. 270 271 13/14/27 0.98 0.87 0.92 0.82 

11.mp4 

(9 min) 

Front 

Daytime 

Car 138 135 3/0/3 0.98 1 0.99 0.98 

Bus 5 5 0/0/0 1 1 1 1 

Truck 11 11 0/0/0 1 1 1 1 

Van 33 35 0/2/2 1 0.94 0.94 0.94 

Total/Avg. 187 186 3/2/5 0.99 0.99 0.99 0.98 

12.mp4 

(1 min) 

Back 

Daytime 

Car 146 146 0/0/0 1 1 1 1 

Bus 0 0 0/0/0 1 1 1 1 

Truck 20 23 0/3/3 1 0.87 0.93 0.85 

Van 8 9 0/1/1 1 0.89 0.94 0.88 

Total/Avg. 174 178 0/4/4 1 0.94 0.97 0.93 

13.mp4 

(22 min) 

Front 

Nighttime 

Car 380 371 9/0/9 0.98 1 0.99 0.98 

Bus 5 7 0/2/2 1 0.71 0.83 0.6 

Truck 33 37 0/4/4 1 0.89 0.94 0.88 

Van 64 70 0/6/6 1 0.91 0.96 0.91 

Total/Avg. 482 485 9/12/21 0.99 0.88 0.93 0.84 

14.mp4 

(5 min) 

Front 

Daytime 

Car 180 173 7/0/7 0.96 1 0.98 0.96 

Bus 3 3 0/0/0 1 1 1 1 

Truck 2 2 0/0/0 1 1 1 1 

Van 39 34 5/0/5 0.87 1 0.93 0.87 

Total/Avg. 224 212 12/0/12 0.96 1 0.98 0.96 

15.mp4 

(34 min) 

Back 

Nighttime 

Car 982 1004 0/22/22 1 0.98 0.99 0.98 

Bus 45 49 0/4/4 1 0.92 0.96 0.91 

Truck 314 316 0/2/2 1 0.99 1 0.99 

Van 50 55 0/5/5 1 0.91 0.95 0.9 

Total/Avg. 1391 1424 0/33/33 1 0.95 0.97 0.95 

16.mp4 

(28 min) 

Back 

Nighttime 

Car 477 472 5/0/5 0.99 1 0.99 0.99 

Bus 4 3 1/0/1 0.75 1 0.86 0.75 

Truck 2 2 0/0/0 1 1 1 1 

Van 8 10 0/2/2 1 0.8 0.89 0.75 

Total/Avg. 491 487 6/2/8 0.93 0.95 0.94 0.87 
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Video Vehicle type 

Ground 

truth 

count 

Method 

count 

Missing/multiple 

detection/error 
Precision % Recall % F1-Score 

Counting 

accuracy 

% 

17.mp4 

(10 min) 

Front 

Daytime 

Car 109 110 0/1/1 1 0.99 1 0.99 

Bus 4 5 0/1/1 1 0.8 0.89 0.75 

Truck 5 5 0/0/0 1 1 1 1 

Van 40 40 0/0/0 1 1 1 1 

Total/Avg. 158 160 0/2/2 1 0.95 0.97 0.94 

18.mp4 

(10 min) 

Back 

Daytime 

Car 121 120 1/0/1 0.99 1 1 0.99 

Bus 3 3 0/0/0 1 1 1 1 

Truck 6 5 1/0/1 0.83 1 0.91 0.83 

Van 43 46 0/3/3 1 0.93 0.97 0.93 

Total/Avg. 173 174 2/3/5 0.96 0.98 097 0.94 

19.mp4 

(3 min) 

Back 

Daytime 

Car 194 198 0/4/4 1 0.98 0.99 0.98 

Bus 9 9 0/0/0 1 1 1 1 

Truck 46 43 3/0/3 0.93 1 0.97 0.93 

Van 3 3 0/0/0 1 1 1 1 

Total/Avg. 252 253 3/4/7 0.98 0.99 0.99 0.98 

20.mp4 

(3 min) 

Front 

Daytime 

Car 158 148 10/0/10 0.94 1 0.97 0.94 

Bus 6 7 0/1/1 1 0.86 0.92 0.83 

Truck 54 45 9/0/9 0.83 1 0.91 0.83 

Van 15 19 0/4/4 1 0.79 0.88 0.73 

Total/Avg. 233 219 19/5/24 0.94 0.91 0.92 0.83 

21.mp4 

(8 min) 

Front 

Daytime 

Car 225 251 0/26/26 1 0.90 0.95 0.88 

Bus 6 8 0/2/2 1 0.75 0.86 0.83 

Truck 31 30 1/0/1 0.97 1 0.98 0.97 

Van 20 19 1/0/1 0.95 1 0.97 0.95 

Total/Avg. 282 308 2/28/30 0.98 0.91 0.94 0.91 

22.mp4 

(23 min) 

Front 

Daytime 

Car 130 132 0/2/2 1 0.98 0.99 0.98 

Bus 0 0 0/0/0 1 1 1 1 

Truck 3 3 0/0/0 1 1 1 1 

Van 20 20 0/0/0 1 1 1 1 

Total/Avg. 153 155 0/2/2 1 1 1 1 

23.mp4 

(23 min) 

Back 

Nighttime 

Car 171 175 0/4/4 1 0.98 0.99 0.98 

Bus 0 0 0/0/0 1 1 1 1 

Truck 0 0 0/0/0 1 1 1 1 

Van 39 39 0/0/0 1 1 1 1 

Total/Avg. 210 214 0/4/4 1 0.99 1 0.99 

24.mp4 

(34 min) 

Front 

Nighttime 

Car 519 549 0/30/30 1 0.95 0.97 0.94 

Bus 24 20 4/0/4 0.83 1 0.91 0.83 

Truck 165 134 31/0/31 0.81 1 0.90 0.81 

Van 34 29 5/0/5 0.85 1 0.92 0.85 

Total/Avg. 742 732 40/30/70 0.87 0.99 0.92 0.86 
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Video Vehicle type 

Ground 

truth 

count 

Method 

count 

Missing/multiple 

detection/error 
Precision % Recall % F1-Score 

Counting 

accuracy 

% 

25.mp4 

(29 min) 

Front 

Nighttime 

Car 523 496 27/0/27 0.94 1 0.97 0.95 

Bus 1 1 0/0/0 1 1 1 1 

Truck 0 0 0/0/0 1 1 1 1 

Van 16 15 1/0/1 0.94 1 0.97 0.94 

Total/Avg. 540 512 28/0/28 0.97 1 0.99 0.97 

26.mp4 

(29 min) 

Back 

Nighttime 

Car 536 519 17/0/17 0.97 1 0.98 0.97 

Bus 6 6 0/0/0 1 1 1 1 

Truck 0 0 0/0/0 1 1 1 1 

Van 18 22 0/4/4 1 0.82 0.9 0.78 

Total/Avg. 560 547 17/4/21 0.99 0.95 0.97 0.94 

27.mp4 

(30 min) 

Front 

Daytime 

Car 332 295 37/0/37 0.89 1 0.94 0.89 

Bus 20 24 0/4/4 1 0.83 0.91 0.8 

Truck 39 34 5/0/5 0.87 1 0.93 0.87 

Van 29 30 0/1/1 1 0.97 0.98 0.97 

Total/Avg. 420 383 42/5/47 0.94 0.95 0.94 0.88 

28.mp4 

(30 min) 

Back 

Daytime 

Car 535 544 9/0/9 0.98 1 0.99 0.98 

Bus 11 9 0/2/2 1 0.82 0.9 0.78 

Truck 40 43 3/0/3 0.93 1 0.96 0.93 

Van 53 43 0/10/10 1 0.81 0.90 0.77 

Total/Avg. 639 639 12/12/24 0.98 0.91 0.94 0.86 

29.mp4 

(15 min) 

Front 

Daytime 

Car 509 562 53/0/53 0.91 1 0.95 0.91 

Bus 14 14 0/0/0 1 1 1 1 

Truck 79 70 0/9/9 1 0.89 0.94 0.87 

Van 107 117 10/0/10 0.91 1 0.96 0.91 

Total/Avg. 709 763 63/9/72 0.96 0.97 0.96 0.92 

 


