Fluid Models in ihe Traffic Flow Theory
Downloads
Downloads
R. Ansorge, What does the entropy solution mean in the
traffic flow theory?, Transpn Res.B, Vol24, No 2 (1990),
-143.
A. Aw, M. Rascle, Resurrection of second order models of
traffic flow, SIAM J. Appl. Math., Vol 60, No.3 (2000),
-938.
J.H. Bick, G.F. Newell, A continuum model for two-directional
traffic flow, Quart. Appl. Math., 18 (1961),
-204.
C.F. Daganzo, Fundamentals of Transportation and
Traffic Operations, Pergamon, Amsterdam, 1996.
C.F. Daganzo, Requiem for second order fluid approximation
to traffic flow, Transpn. Res. B, Vol 29, No 4
(1995), 277-286.
C.F. Daganzo, A continuum themy of traffic dynamics
for freeways with special lanes, Transpn Res. B, Vol 31,
No 2 (1997), 83-102.
N.D. Fowkes, J.J. Mahony, An Introduction to Mathematical
Modelling, Wiley, New York, 1994.
R. Haberman, Mechanical Vibrations, Population Dynamics
and Traffic Flow, SIAM, Philadelphia, 1998.
D. Helbing, Verkehrsynamik, Springer Verlag, Berlin,
H. Holden, N.H. Risebro, A mathematical model of
traffic flow on a network of unidirectional roads, SIAM J.
Math. Anal., Vol26, No 4 (1995), 999-1017.
E. Godlewski, P .A. Raviart, Hyperbolic systems of conseJvation
laws, Ellipses, Paris, 1991.
C.J. Leo, R.L. Pretty, Numerical simulation of macroscopic
continuum traffic models, Transpn Res. B, Vol
, No 3 (1992), 207-220.
R.J. LeVeque, Numelical Methods for ConseJVation
Laws, Birkhauser, Basel, 1992.
M.J. Lighthill, J.B. Whitham, On kinematic waves. I:
Flow movement in long rivers. II· A theory of traffic flow
on long crowded roads, Proc. Royal Soc. Edinburgh. A,
(1955), 281-345.
P.G. Michalopoulos, D.E. Beskos, J.K. Lin, Analysis of
interrupted traffic flow by finite difference methods.
Transpn Res. B, 18B (1984), 409-421.
P.G. Michalopulos, P.Yi, A.S. Lyrintzis, Continuum
modelling of traffic dynamics for congested freeways,
Transpn Rs. B, Vol 27, No 4 (1993), 315-332.
C.S. Morawetz, Nonlinear Waves and Shocks, Springer,
Berlin, 1981.
H.J. Payne, Models of freeway traffic and control, Simulation
Councils Pros. Series: Mathematical Models of
Public Systems, Vol 1, No 1 (1971), ed. G. A Bakey,
-61.
I. Prigorgine, F.C. Andrews, A. Boltzmann-like approach
for traffic flow, Operations Research, 8 (1960),
-797.
P.I. Richards, Shock waves on the highway, Operations
Research, 4 (1956), 42-51.
A.J. Roberts, One-Dimensional Introduction to Continuum
Mechanics, World Scientific, Singapore, 1994.
K.K. Sanwal, K.Petty, J.Walrand,An extended macroscopic
modelfortrafficflow, Transpn Res. B, Vol30, No
(1996), 1-9.
H. M. Zhang, A theory of nonequilibrium traffic flow,
Transpn Res. B, Vol 32, No 7 (1998), 485-498.
X. Zhang, F.J. Jarret, Stability analysis of the classical
car-following model, Transpn Res. B, Vol 31, No 6
(1997), 441-462.