Short-Term Passenger Demand Forecasting Using Univariate Time Series Theory
Downloads
Downloads
Gnap, J., Poliak, M., Konečný, V.: 2008a. Prognóza vývoja pre okresy Žilinského kraja obsluhované SAD Žilina. Žilina: FPEDaS ŽU v Žiline; 2008
Gnap, J., Poliak, M., Konečný, V.: 2008b. Prognóza vývoja pre okresy Žilinského kraja obsluhované SAD Liptovský Mikuláš. Žilina: FPEDaS ŽU v Žiline; 2008
Cyprich, O.: Modelovanie dopytu cestujúcich po prímestskej autobusovej doprave. Žilina: Žilinská univerzita v Žiline, Fakulta prevádzky a ekonomiky dopravy a spojov, Katedra cestnej a mestskej dopravy; 2012
Jugović, A., Hess, S., Jugovic, T.P.: Traffic demand forecasting for port services. Promet - Traffic&Transportation [Internet]. 2011 [cited 2012 April 14]; 23(1): 59-69. Available from: http://www.fpz.unizg.hr/traffic/index.php/PROMTT/article/view/149/56
Brnjac, N., Abramović, B., Maslarić, M.: Forecasting intermodal transport requirements on corridor X. Promet - Traffic&Transportation [Internet]. 2010 [cited 2012 April 20]; 22(4): 303-307. Available from: http://www.fpz.unizg.hr/traffic/index.php/PROMTT/article/view/195/100
Krasić, D., Gatti, P.: Forecasting methodology of maritime passenger demand in a tourist destination. Promet - Traffic&Transportation [Internet]. 2009 [cited 2012 April 20]; 21(3): 183-190. Available from: http://www.fpz.unizg.hr/traffic/index.php/PROMTT/article/view/224/129
Dicová, J., Ondruš, J.: Trend of public mass transport indicators – as a tool of transport management and development of regions: Communications – Scientific Letters of the University of Žilina. 2010; 12(3A): 121-126
Karlaftiss, M.G., Vlahogianni, E.I.: Statistical methods versus neural networks in transportation research: Differences, similarities and some insights. Transportation Research Part C [Internet]. 2011 [cited 2012 April 13; 19 (3): 387-399. Available from: http://www.sciencedirect.com/science/article/pii/S0968090X10001610
Cyprich, O.: Application of Univariate Time Series Theory to Passenger Demand Forecasting: Communications – Scientific Letters of the University of Žilina. 2011
SAS LE 4.1 [software]. Cary, NC : SAS Institute Inc. 2006
SAS 9.1.3 [software]. Cary, NC : SAS Institute Inc. 2003
Cyprich, O.: Modelovanie vývoja vybraných kvantitatívnych ukazovateľov ako nástroja riadenia dopravnej spoločnosti, Ph.D. thesis concept. Žilina: University of Žilina; 2010
Cipra, T.: Analýza časových řad s aplikacemi v ekonomii. Praha/Bratislava: STNL/ALFA; 1986
Arlt, J., Arltová, M.: Ekonomické časové řady. Praha: Professional Publishing; 2009
Chatfield, Ch., Yar, M.: Holt-Winters forecasting: some practical issues: The Statistician; 1988
Dagum, E.B.: The X-11-ARIMA/88 Seasonal Adjustment Method: Foundations and User´s Manual, Statistics Canada. Ottawa; 1988
U.S. Bureau of the Census: X-12-ARIMA Seasonal Adjustment Program - Version 0.2.8, U.S. Bureau of the Census. Washington; 2001
U.S. Bureau of the Census: X-12-ARIMA Reference Manual - Version 0.2.8, U.S. Bureau of the Census. Washington; 2001
Leonard, M.: Large-Scale Automatic Forecasting. Millions of Forecasts [Internet]. 2002 [cited 2012 April 28]. Available from: https://support.sas.com/rnd/app/papers/largescale.pdf
Filiben, J.J., Heckert, A.: Exploratory data analysis. NIST/SEMATECH e-Handbook of Statistical Methods, NIST/SEMATECH, [Internet]. 2003 [cited 2012 April 15]; Available from: http://www.itl.nist.gov/div898/handbook/
Ljung, G.M., Box GEP. On the measure of lack fit in time series models: Biometrika. 1978
Hamilton, J.D.: Time Series Analysis. Princeton: Princeton University Press; 1994
Dickey, D.A., Hasza, D.P., Fuller, W.A.: Testing for unit roots in seasonal time series: Journal of the American Statistical Association. 1984
Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples): Biometrika. 1965
Marček, D., Marček, M.: Analýza, modelovanie a prognózovanie časových radov s aplikáciami v ekonomike. Žilina: EDIS; 2001
Duke University: What to look for in regression model output [online], Duke university, Durham, [cited 2012 April 16] available from: http://www.duke.edu/~rnau/411regou.htm
Cyprich, O., Holeša, L.: Analýza použiteľnosti metódy X-12-ARIMA pri prognózovaní a dekompozícii časových radov dopytu cestujúcich: Perners Contacts, 2012; 7(1): 13-25