Ship Lock Control System Optimization using GA, PSO and ABC: A Comparative Review
Downloads
Downloads
Partenscky, H.W.: Inland waterways: lock installations. (Binnenverkehrswasserbau: Schleusenanlagen – in original). Berlin: Springer; 1986.
Bačkalić, T.: Traffic control on artificial waterways of limited dimensions in function of its throughput capacity (Upravljanje saobraćajem na veštačkim plovnim putevima ograničenih dimenzija u funkciji njihove propusne sposobnosti - in original). Novi Sad: University of Novi Sad, Faculty of technical sciences, PhD thesis; 2000.
Smith, L.D., Sweeney, I.I.D.C., Campbell, J.F.: Simulation of alternative approaches to relieving congestion at locks in a river transportation system. Journal of the Operational Research Society.2009; 60:519-533
Radmilović, Z., Maraš, V., Jovanović, S.: Ship lock as general queuing system with batch arrivals and batch service. PROMET – Traffic&Transportation. 2012;19(6):343-352
Bugarski, V., Bačkalić, T., Kuzmanov, U.: Fuzzy decision support system for ship lock control. Expert Systems with Applications. 2013; 40(10):3953-3960 http://dx.doi.org/10.1016/j.eswa.2012.12.101
Campbell, J.F., Smith, L.D., Sweeney, I.I.D.C., Mundy, R., Nauss, R.M.: Decision tools for reducing congestion at locks on the upper Mississippi river. Proceedings of the 40th Hawaii International Conference on System Sciences. 2007; 55-58
Kecman, V.: Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. Boston, MA: Massachusetts Institute of Technology; 2001
Kosko, B.: Fuzzy thinking: the new science of fuzzy logic. New York: Hyperion; 1993
Comes, T., Hiete, M., Wijngaards, N., Schultmann, F.: Decision maps: a framework for multi-criteria decision support under severe uncertainty. Decision Support Systems. 2011; 52(1):108-118
Onieva, E., Milanes, V., Villagra, J., Perez, J., Godoy, J.: Genetic optimization of a vehicle fuzzy decision system for intersections. Expert Systems with Applications. 2012; 39(18):13148-13157. http://dx.doi.org/10.1016/j.eswa.2012.05.087
Teodorović, D., Vukadinović, K.: Traffic control and transport planning: a fuzzy sets and neural networks approach. Norwel, MA: Kluwer Academia Publishers; 1998
Castanho, M.J.P., Hernandes, F., De Re, A.M., Rautenberg, S., Billis, A.: Fuzzy expert system for predicting pathological stage of prostate cancer. Expert Systems with Applications. 2013; 40(2):466-470. http://dx.doi.org/10.1016/j.eswa.2012.07.046
Dasgupta, D., Michalewicz, Z.: Evolutionary algorithms in engineering applications. Berlin: Springer Verlag; 1997
Yunusoglu, M.G., Selim, H.: A fuzzy rule based expert system for stock evaluation and portfolio construction: an application to Istanbul Stock Exchange. Expert Systems with Applications. 2013; 40(3):908-920. http://dx.doi.org/10.1016/j.eswa.2012.05.047
Teodorović, D., Dell’Orco, M.: Bee colony optimization–a cooperative learning approach to complex transportation problems. Advanced OR and AI Methods in Transportation. Proceedings of 16th Mini–EURO Conference and 10th Meeting of EWGT. 2005 Sept.; 51-60.
He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence. 2007; 20:89-99.
Kanović, Ž., Rapaić, M., Jeličić, Z.: Generalized particle swarm optimization algorithm: theoretical and empirical analysis with application in fault detection. Applied Mathematics and Computation. 2011; 217:10175-10186. http://www.sciencedirect.com/science/article/pii/S0096300311006680
Ting, C.J., Schonfield, P.: Control alternatives at a waterway lock. Journal of Waterway, Port, Coastal and Ocean Engineering. 2001; 127(2):89-96. http://dx.doi.org/10.1061/(ASCE)0733-950X(2001)127:2(89)
International Navigation Association. Inland Navigation Commission. Guidelines and recommendations for river information services. International Navigation Association; 2004.
Willems, C., Schmorak, N.: River Information Services on the way to maturity. Proc. on 32nd PIANC International Navigation Congress, Liverpool, United Kingdom, 10-14 May 2010. 2010; 1:285-297
Yager, R.R., Filev, D.P.: Essentials of fuzzy modeling and control. New York: John Wiley and Sons; 1994
Zimmermann, H.J.: Fuzzy set theory and its applications. 4th ed. Dordrecht: Kluwer Academic Publishers; 2001
Camps-Valls, G., Martín-Guerrero, J.D., Rojo-Alvarez, J.L., Soria-Olivas, E.: Fuzzy sigmoid kernel for support vector classifiers. Neurocomputing. 2004; 62:501-506
Jang, J-S.R., Sun, C-T., Mizutani, E.: Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. New Jersey: Prentice Hall; 1997
Nguyen, H.T., Sugeno, M.: Fuzzy systems: modelling and control. Dordrecht: Kluwer Academic Publishers; 1998
Jantzen, J.: Foundations of fuzzy control. New Jersey: John Wiley and Sons; 2007
Lancaster, S.: Fuzzy logic controllers. Portland: Maseeh College of Engineering and Computer Science at PSU; 2008
Collette, Y., Siarry, P.: Multiobjective optimization: principles and case studies. Berlin: Springer; 2004
Rao, R.V., Patel, V.: Multi-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithm. Engineering Applications of Artificial Intelligence.2013; 26(1):430-445. http://dx.doi.org/10.1016/j.engappai.2012.02.016
Holland, J.: Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press; 1975
Michalewicz, Z.: Genetic algorithms + data structures = evolution programming. 3rd ed. Berlin: Springer Verlag; 1999
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks, Perth, Australia. 1995; 1942-1948
Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. Proceedings of IEEE International Congress on Evolutionary Computation.1999; 3:101-106
Clerc, M., Kennedy, J.: The particle swarm: explosion, stability and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation. 2002; 6(1):58-73
Rapaić, M., Kanović, Ž.: Time-varying PSO: convergence analysis, convergence related parameterization and new parameter adjustment schemes. Information Processing Letters. 2009; 109(1):548-552 http://www.sciencedirect.com/science/article/pii/S0020019009000350#
Ratnaweera, A., Saman, K.H., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation. 2004; 8(3):240-255
Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report- TR06. Kayseri, Turkey: Erciyes University; 2005