Automatic Pavement Crack Recognition Based on BP Neural Network
Downloads
Downloads
Lee, H., Oshima, H.: New crack-imaging procedure using spatial autocorrelation function. Journal of Transportation Engineering, 1994; 120(2):206-228
Lee, H.D. Kim, J.J.: Development of a manual crack quantification and automated crack measurement system. Report, Project TR- 457, University of Iowa, 2005
Wang, C.F., Sha, A.M.: Pavement crack classification based on chain code. In Proceedings of 7th International Conference on Fuzzy Systems and Knowledge Discovery, IEEE, 2010; 593-597
Lee, B.J.: Development of an integrated digital pavement imaging and neural network system. PHD Dissertation, USA: The University of Iowa, 2001
Mustaffar, M., Ling, T.C., Puan, O.C.: Automated pavement imaging program (APIP) for pavement cracks classification and quantification - a photogrammetric approach. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008; 37 (B4):367-372
Sorncharean, S., Phiphobmongkol, S.: Crack detection on asphalt surface image using enhanced grid cell analysis. In Proceedings of 4th IEEE International Symposium on Electronic Design, Test & Application, 2008; 49-54
Li L, Sun, L.J., Tan, S.G., Ning, G.B.: Line-structured light image processing method for pavement rut detection. Journal of Tongji University (Natural Science), 2013; 41(5):710-715
Cheng, H.D., Miyojim, M.: Novel system for automatic pavement distress detection. Journal of Computing in Civil Engineering, 1998 July; 145-152
Gao, J.Z., Ren, M.W., Yang, J.Y.: A practical and fast method for non-uniform illumination correction. Journal of Image and Graphics, 2002; 7A (6):548-552
Koutsopoulos, H.N., Downey, A.B.: Primitive-based classification of pavement cracking images. Journal of Transportation Engineering, 1993; 119(3):402-418
Li L, Sun, L.J., Chen, Z.: Modified background correction algorithms for pavement distress images. Journal of Tongji University (Natural Science), 2011; 39(1):79-84
Otsu, N.: A threshold selection method for gray level histograms. Transactions on Systems, Man and Cybernetics, IEEE, 1979; 9(1):62-66
Koutsopoulos, H.N., Sanhouri, I.E.: Methods and algorithms for automated analysis of pavement images. TRB1311, 1991; 103-111
Rosenfeld, A., Smith, R.C.: Thresholding using relaxation. Pattern Analysis and Machine Intelligence, IEEE Transactions, 1981; 3(5):598-606
Cheng, H.D.: Automated real-time pavement distress detection using fuzzy logic and neural network. In Proceedings of SPIE, 1996; 2946:140-151
Chen, G.: The fisher criterion function method of image thresholding. Chinese Journal of Scientific Instrument, 2003; 24(6):564-567
Li, L., Sun, L.J., Chen, Z.: An edge detection procedure designed for pavement images. Journal of Tongji University (Natural Science), 2011; 39(5):688-692
Maini, R., Aggarwal, H.: Study and comparison of various image edge detection techniques. International Journal of Image-processing, 2009; 3(1):1-12
Fukuhara, T., Terada, K., Nagao, M., Kasahara, A., Ichihashi, S.: Automatic pavement-distress-survey system. Journal of Transportation Engineering, 1990; 116(3):280-286
Oliverira, H., Correia, P.L.: Identifying and retrieving distress images from road pavement surveys. In Proceedings of ICIP, 2008; 57-60
Lee, B.J.: Development of an integrated digital pavement imaging and neural network system. PHD Dissertation, USA: The University of Iowa, 2001
Yu, B., Yang, Z.Z., Yao, B.Z.: Bus arrival time prediction using support vector machines. Journal of Intelligent Transportation Systems, 2006; 10(4):151-158
Yao, B.Z., Hu, P., Lu, X.H., Gao, J.J., Zhang, M.H.: Transit network design based on travel time reliability. Transportation Research Part C, 2013; DOI:10.1016/j.trc.2013.12.005
Yu B, William, H.K.L., Mei, L.T.: Bus arrival time prediction at bus stop with multiple routes. Transportation Research Part C, 2011, 19(6):1157-1170
Yu, B., Yang, Z.Z., Chen, K., Yu, B.: Hybrid model for prediction of bus arrival times at next station. Journal of Advanced Transportation, 2010; 44(3):193-204
Yu, B., Ye, T., Tian, X.M., Ning, G.B., Zhong, S.Q.: Bus travel-time prediction with forgetting factor. Journal of Computing in Civil Engineering, [Internet]. 2012 November [cited 2013 May 14];[about 27pp.]. Available from: http://ascelibrary.org/doi/pdf/10.1061/(ASCE)CP.1943-5487.0000274
Chien, S.J., Ding, Y., Wei, C.: Dynamic bus arrival time prediction with artificial neural networks. Journal of Transportation Engineering, 2002; 128(5):429-438
Chen, M., Liu, X., Xia, J., Chien, S.J.: A dynamic bus arrival time prediction model based on APC data. Computer-Aided Civil and Infrastructure Engineering, 2004; 19(5):364-376
Jeong, R., Rilett, L.R.: Bus arrival time prediction using artificial neural network model. In Proceedings of 7th International IEEE Conference on Intelligent Transportation Systems, 2004; 988-993
Basheer, I.A., Hajmeer, M.: Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiol Methods, 2000; 43(1):3-31
Zhang, L., Luo, J.H., Yang, S.Y.: Forecasting box office revenue of movies with BP neural network. Expert Systems with Applications, 2009; 36(3):6580-6587
Wong, W.K., Yuen, C.W.M., Fan, D.D., Chan, L.K., Fung, E.H.K.: Stitching defect detection and classification using wavelet transform and BP neural network. Expert Systems with Applications, 2009; 36(2):3845-3856
Lippmann, R.P.: An introduction to computing with neutral networks. IEEE ASSP Magazine, 1987; 4(2):4-22
Cybenko, G.: Approximation by superpositions of a sigmoid function. Mathematics of Control, Signals and Systems, 1989; 2:303-314
Karsoliya, S.: Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. International Journal of Engineering Trends and Technology, 2012; 3(6):713-717
Boger, Z., Guterman, H.: Knowledge extraction from artificial neural network models. In Proceedings of IEEE Systems, Man, and Cybernetics Conference, 1997; 4:3030-3035
Berry, M.J.A., Linoff, G.: Data mining techniques. NY: John Wiley & Sons, 1997
Zhou, J.: Automated pavement inspection based on wavelet analysis. PHD Dissertation, USA: Stony Brook University, 2004
Li, N.N., Hou, X.D., Yang, X.Y., Dong, Y.F.: Automation recognition of pavement surface distress based on support vector machine. In Proceedings of 2nd International Conference on Intelligent Networks and Intelligent Systems, 2008: 346-349