Improved Ant Colony Optimization for Seafood Product Delivery Routing Problem
Downloads
Downloads
Jaffry, S., Pickering, H., Ghulam, Y., Whitmarsh, D., Wattage, P.: (2004); Consumer choices for quality and sustainability labelled seafood products in the UK. Food Policy 29(3):215–228
Guillotreau, P., Peridy, N.: (2000); Trade barriers and European imports of seafood products: a quantitative assessment. Marine Policy, 24(5):431-437
Salari, M., Toth, P., Tramontani, A.: (2010); An ILP improvement procedure for the Open Vehicle Routing Problem. Computers & Operations Research, 37(12):2106-2120.
Brandao, J.: (2004); A tabu search algorithm for the open vehicle routing problem. European Journal of Operational Research, 157(3):552-564
Renaud, J., Laporte, G., Boctor, F.F.: (1996); A Tabu Search Heuristic for the Multi-Depot Vehicle Routing Problem. Computers & Operations Research, 23(3):229-235
Yu, B., Yang, Z.Z., Xie, J.X.: (2011); A parallel improved ant colony optimization for multi-depot vehicle routing problem. Journal of the Operational Research Society, 62:183-188
Chen, G., Govindan, K., and Yang, Z.Z.: (2013); Managing truck arrivals with time windows to alleviate gate congestion at container terminals, International Journal of Production Economics, 141(1):179-188
Chen, G., Yang, Z.Z.: (2010); Optimizing Time Windows for Managing Arrivals of Export Container in Chinese Container Terminals, Maritime Economics & Logistics, 12(1):111-126
Yao, B.Z., Hu, P., Lu, X.H., Gao, J.J. Zhang, M.H.: (2013); Transit network design based on travel time reliability. Transportation Research Part C, DOI:10.1016/j.trc.2013.12.005(in press).
Yao B.Z., Hu, P., Zhang, M.H., Wang, S.: (2013); Artificial Bee Colony Algorithm with Scanning Strategy for Periodic Vehicle Routing Problem. SIMULATION: Transactions of the Society for Modeling and Simulation International. 89(6):762-770
Yao, B.Z., Yang, C.Y., Yao, J.B., Sun, J.: (2010); Tunnel Surrounding Rock Displacement Prediction Using Support Vector Machine. International Journal of Computational Intelligence Systems, 3(6): 843-852
Yu, B., Yang, Z.Z.: (2011); An ant colony optimization model: The period vehicle routing problem with time windows. Transportation Research Part E, 47(2):166-181
Yu, B., Lam, W.H.K., Lam, T.M.: (2011); Bus Arrival Time Prediction at Bus Stop with Multiple Routes. Transportation Research Part C, 19(6):1157-1170
Yu, B., Yang, Z.Z., LI, S.: (2012); Real-Time Partway Deadheading Strategy Based on Transit Service Reliability Assessment. Transportation Research Part A, 46(8):1265-1279
Yue, M., Zhang, Y.S., Tang, F.Y.: (2013); Path following control of a two-wheeled surveillance vehicle based on sliding mode technology. Transaction of the Institute of Measurement and Control, 35(2): 212-218
Repoussisa, P.P., Tarantilisa, C.D., Bräysyb, O., Ioannoua, G.: (2010); A hybrid evolution strategy for the open vehicle routing problem. Computers & Operations Research, 37(3):443-455
Mirabi, M., Fatemi Ghomib, S.M.T., Jolaic, F.: (2010); Efficient stochastic hybrid heuristics for the multi-depot vehicle routing problem. Robotics and Computer-Integrated Manufacturing, 26(6):564-569
Ho, W., Ho, G.T.S., Ji, P., Lau, H.C.W.: (2008); A hybrid genetic algorithm for the multi-depot vehicle routing problem. Engineering Applications of Artificial Intelligence, 21(4):548-557
Dorigo, M., Maniezzo, V., Colorni, A.: (1996); The Ant System: Optimization by a Colony of Cooperating Agents, IEEE Transactions on Systems, Mans, and Cybernetics 1 (26), 29-41
Gambardella, L., Taillard, E., Dorigo, M.: (1997); Ant Colonies for the QAP, Technical Report 97-4, IDSIA, Lugano, Switzerland
Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M.: (1994): Ant System for Job-Shop Scheduling, Jorbel -Belgian Journal of Operations Research Statistics and Computer Science 34 (1), 39–53
Schoonderwoerd, R., Holland, O., Bruten, J., Rothkrantz, L.: (1997); Ant-Based Load Balancing in Telecommunications Networks, Adaptive Behavior 5 (2), 169-207
Yu, B., Yang, Z.Z., Yao, B.Z.: (2009); An Improved Ant Colony Optimization for Vehicle Routing Problem. European Journal of Operational Research, 196(1):171-176
Clarke, G., Wright, J.W.: (1964); Scheduling of Vehicles from a Central Depot to a Number of Delivery Points. Operations research, 12(4):568-581
Croes, G.A.: 1958, A method for solving traveling salesman problems. Operations Research, 6: 791–812.
Bullnheimer, B., Hartl, R.F., Strauss, C.: (1997); Applying the Ant System to the Vehicle Routing Problem, in: Second Metaheuristics International Conference, MIC’97, Sophia-Antipolis, France.
Bullnheimer, B., Hartl, R.F., Strauss, C.: (1999); An Improved Ant System Algorithm for the Vehicle Routing Problem. Annals of Operations Research, 89, 319–28
Bell, J.E., McMullen, P.R.: (2004); Ant Colony Optimization Techniques for the Vehicle Routing Problem. Advanced Engineering Informatics 1;8, 41-48
Chen, C.H., Ting, C.J.: (2006); An Improved Ant Colony System Algorithm For The Vehicle Routing Problem. Journal of the Chinese Institute of Industrial Engineers, 23(2):115-126
Stützle, T. and Hoos, H.H.: (2000); MAX–MIN ant system, Future Generation Computer Systems, 16(8): 889-914
Christofides, N. and Eilon, S.: (1969); An algorithm for the vehicle dispatching problem. Journal of the Operational Research Society, 20: 309–318
Gillett, B.E., Johnson, J.G.: (1976); Multi-terminal vehicle-dispatch algorithm. Omega, 4(6):711-718
Chao, M.I., Golden, B.L. and Wasil, E.A.: (1993). A new heuristic for the multi-depot vehicle routing problem that improves upon best known solutions. American Journal of Mathematical and Management Sciences, 13(3-4):371-406
Cordeau, J.F., Gendreau, M. and Laporte, G.: (1997). A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks, 30: 105–119