Reinforcement Learning for Ramp Control: An Analysis of Learning Parameters
Downloads
about how to select suitable parameter values that can achieve a superior performance were provided.
Downloads
Zhang G, Wang Y. Optimizing coordinated ramp metering: a preemptive hierarchical control approach. Comput-Aided Civ Inf. 2013;28(1):22-37. doi: 10.1111/j.1467-8667.2012.00764.x
Papageorgiou M, Kotsialos A. Freeway ramp metering: an overview. IEEE Trans Intell Transport Syst. 2002;3(4):271-281. doi: 10.1109/TITS.2002.806803
Masher DP, Ross DW, Wong PJ, Tuan PL, Zeidler HM, Petracek S. Guidelines for design and operation of ramp control systems. Stanford: Stanford Research Institute; 1975.
Papageorgiou M, Hadj-Salem H, Blosseville JM. ALINEA: A local feedback control law for on-ramp metering. Transport Res Rec, 1991;1320:58-64.
Hegyi A, De Schutter B, Hellendoorn H. Model predictive control for optimal coordination of ramp metering and variable speed limits. Transport Res C-Emer. 2005;13(3):185-209. doi: 10.1016/j.trc.2004.08.001
Papamichail I, Kotsialos A, Margonis I, Papageorgiou M. Coordinated ramp metering for freeway networks – a model-predictive hierarchical control approach. Transport Res C- Emer. 2010;18(3):311-331. doi: 10.1016/j.trc.2008.11.002
Jacob C, Abdulhai B. Machine learning for multi-jurisdictional optimal traffic corridor control. Transport Res A-Pol. 2010;44(2):53-64. doi: 10.1016/j.tra.2009.11.001
Jacob C, Abdulhai B. Automated adaptive traffic corridor control using reinforcement learning: approach and case studies. Transport Res Rec. 2006;1959:1-8. doi: 10.3141/1959-01
Veljanovska K, Bombol K, Maher T. Reinforcement learning technique in multiple motorway access control strategy design. Promet – Traffic & Transportation. 2010;22(2):117-123. doi: 10.7307/ptt.v22i2.170
Rezaee K, Abdulhai B, Abdelgawad H. Application of reinforcement learning with continuous state space to ramp metering in real-world conditions. Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems. 2012 Sept 16-19; Anchorage, USA. IEEE; 2012.
Lu C, Chen H, Grant-Muller S. An indirect reinforcement learning approach for ramp control under incident-induced congestion. Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems. 2013 Oct 6-9; The Hague, the Netherlands. IEEE; 2013.
Lu C, Chen H, Grant-Muller S. Indirect reinforcement learning for incident-responsive ramp control. Procedia Soc Behav Sci. 2014;111:1112-1122. doi: 10.1016/j.sbspro.2014.01.146
Rezaee K, Abdulhai B, Abdelgawad H. Self-learning adaptive ramp metering: analysis of design parameters on a test case in Toronto, Canada. Transport Res Rec. 2013;2013:10-18. doi: 10.3141/2396-02
Sutton RS, Barto AG. Reinforcement learning: an introduction. Cambridge: the MIT press; 1998.
[Watkins CCH, Dayan P. Q-learning. Mach Learn. 1992;8(3-4):279-292. doi: 10.1007/BF00992698
Even-Dar E, Mansour Y. Learning rates for Q-learning. J Mach Learn Res. 2004;5:1-25.
Sun X, Horowitz R. Set of new traffic-responsive ramp-metering algorithms and microscopic simulation results. Transport Res Rec. 2006;1959:9-18. doi: 10.3141/1959-02
Gomes G, Horowitz R. Optimal freeway ramp metering using the asymmetric cell transmission model. Transport Res C-Emer. 2006;14(4):244-262. doi: 10.1016/j.trc.2006.08.001
Haddad J, Ramezani M, Geroliminis N. Cooperative traffic control of a mixed network with two urban regions and a freeway. Transport Res B-Meth. 2013;54:17-36. doi: 10.1016/j.trb.2013.03.007
Gomes G, Horowitz R. A study of two onramp metering schemes for congested freeways. in, 2003. Proceedings of the 2003 American Control Conference. 2003 June 4-6; Denver, USA. IEEE; 2003.
Arnold ED. Ramp metering: a review of the literature. Virginia: Virginia Transportation Research Council; 1998.
Saltelli A. Sensitivity analysis: Could better methods be used. J Geophys Res-Atmos. 1999;104(D3):3789-3793. doi: 10.1029/1998JD100042