A simulation-based dynamic traffic assignment model with combined modes

dynamic traffic assignment combined modes mesoscopic simulation time-dependent shortest path algorithm

Authors

Downloads

This paper presents a dynamic traffic assignment (DTA) model for urban multi-modal transportation network by con­structing a mesoscopic simulation model. Several traffic means such as private car, subway, bus and bicycle are con­sidered in the network. The mesoscopic simulator consists of a mesoscopic supply simulator based on MesoTS model and a time-dependent demand simulator. The mode choice is si­multaneously considered with the route choice based on the improved C-Logit model. The traffic assignment procedure is implemented by a time-dependent shortest path (TDSP) al­gorithm in which travellers choose their modes and routes based on a range of choice criteria. The model is particularly suited for appraising a variety of transportation management measures, especially for the application of Intelligent Trans­port Systems (ITS). Five example cases including OD demand level, bus frequency, parking fee, information supply and car ownership rate are designed to test the proposed simulation model through a medium-scale case study in Beijing Chaoy­ang District in China. Computational results illustrate excel­lent performance and the application of the model to analy­sis of urban multi-modal transportation networks.